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In this paper we review cosmological relativity, a new special theory of relativity
that was recently developed for cosmology, and discuss in detail some of its
aspects. We recall that in this theory it is assumed that gravitation is negligible.
Under this assumption, the receding velocities of galaxies and the distances
between them in the Hubble expansion are united into a four-dimensiona l pseudo-
Euclidean manifold, similarly to space and time in ordinary special relativity.
The Hubble law is assumed and is written in an invariant way that enables one
to derive a four-dimensiona l transformation which is similar to the Lorentz
transformation . The parameter in the new transformation is the ratio between the
cosmic time to the Hubble time (in which the cosmic time is measured backward
with respect to the present time). Accordingly, the new transformation relates
physical quantities at different cosmic times in the limit of weak or negligible
gravitation. The transformation is then applied to the problem of the expansion
of the universe at the very early stage when gravity was negligible and thus the
transformation is applicable. We calculate the ratio of the volumes of the universe
at two different times T1 and T2 after the big bang. Under the assumptions that
T2 2 T1 ’ 10 2 32 sec and T2 ¿ 1 sec, we find that V2 /V1 5 10 2 16 / ! T1. For T1 ’
10 2 132 sec we obtain V2 /V1 ’ 1050. This result conforms with the standard
inflationary universe theory, but now it is obtained without assuming that the
universe is propelled by antigravity. New applications of the theory are presented.
This includes a new law for the decay of radioactive materials that was recently
developed by Carmeli and Malin. The new law is a modification of the standard
exponential formula when cosmic times are considered instead of the ordinary
local times. We also show that there is no need to assume the existence of galaxy
dark matter; the Tully±Fisher law is derived from our theory. A significant
extension of the theory to cosmology that was recently made by Krori, Pathak,
Das, and Purkayastha is given. In this way cosmological relativity becomes a
general theory of relativity in seven dimensions of curved space-time-velo city.
The solutions of the field equations in seven dimensions obtained by Krori et al.
are given and compared to those of the standard Friedmann ±Robertson ±Walker
result. A completely new picture of the expanding universe is thus obtained and
compared to the FRW one.
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1. INTRODUCTION

Several important problems in cosmology are being widely discussed

these days. The first is the problem of dark matter, its theory and its experimen-
tal verification. This problem is intimately related to the amount of matter

in the universe, or more accurately to the value of V 5 r / r c , where r c is the

critical matter density and r is the actual matter density in the universe.

A second problem is that of the inflation of the universe at the very

early stage, at which time the universe expanded drastically. This problem
is related to particle physics. What are the reasons for the inflation? Was

there a kind of antigravity? A third problem is the age of the universe. If

one determines the age of the universe by nuclear synthesis measurements

of the earth or our galaxy and compares it with that obtained from measure-

ments of the Hubble constant (using a certain model for the universe), these

two ages are not exactly equal. Also the problem of directly measuring the
Hubble constant seems to depend on the distance scale of the galaxies used

for the measurements.

In this paper we address ourselves to the problem of the inflation at the

early stage of the universe. At that time gravitation was not in existence.

Within this assumption of negligible gravitation we develop a theory which

enables us to discuss and obtain some exact results that standard methods
are unable to provide.

Some new applications of the theory are presented. This includes a new

law for the decay of radioactive materials, recently developed by Carmeli

and Malin. The new law is a modification of the standard exponential formula

when cosmic times are considered instead of the ordinary local times. We
also discuss the problem of galaxy dark matter. We show that there is no

need to assume the existence of dark matter for galaxies. It is shown that

the Tully±Fisher law can be derived from our theory. A significant extension

of the theory to cosmology that was recently made by Krori et al. is given.

In this way cosmological relativity becomes a general theory of relativity in

seven dimensions of curved space-time-velocity. The solutions of the field
equations in seven dimensions obtained by Krori are given and compared to

those of the standard Friedmann±Robertson±Walker result. A completely

new picture of the expanding universe is thus obtained and compared to the

FRW one.

2. CONSEQUENCES OF THE HUBBLE EXPANSION

The Hubble law expresses the simple relationship between the receding

velocities of galaxies to their distances, and thus gives a mathematical expres-

sion to the observation that the universe is expanding. This is an experimental
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fact, which underlies the assumption that the observed redshift in the spectrum

emitted from galaxies is due to the Doppler effect. In mathematical terms

the Hubble law is given by

v 5 H0R (1)

H0 is the Hubble constant. In reality H0 is not a constant in cosmic times,

due to gravity, whose effect varies as the universe expands. In the limiting

case of negligible gravitation assumed in this paper H0 can be considered to

be a constant and does not depend on the cosmic time.

If we denote by t 5 H 2 1
0 the Hubble time, then t can be considered as

the age of the universe in this particular case of neglecting gravity. We write
the Hubble law in the trivially different form

R 5 t v (2)

in order to compare it with the well-known expression for the propagation

of light, R 5 ct. In Eqs. (1) and (2) R 5 (x, y, z). Equation (2) can thus be

expressed as

x2 1 y2 1 z2 5 t 2v2 (3)

where v is the outgoing velocity. Accordingly

x2 1 y2 1 z2 2 t 2v2 5 0 (4)

It will furthermore be assumed that a relationship of the form (4) holds
at any cosmic time t. Accordingly, if we denote distances and velocities at

two different cosmic times t and t8 by x, y, z, v and x8, y8, v8, then it will be

assumed that

x82 1 y82 1 z82 2 t 2v82 5 x2 1 y2 1 z2 2 t 2v2 (5)

Equation (5) resembles that for the propagation of light viewed from two

different inertial frames of references moving with a constant velocity with
respect to each other. In our case we have what might be called cosmic

frames of references which differ from each other by a cosmic time.

3. THE COSMOLOGICAL TRANSFORMATION

The question now arises as to what is the transformation between the

four variables x, y, z, v, and x8, y8, z8, v8, that leaves unaffected the invariance

equation (5)?
For simplicity it will be assumed that y8 5 y, z8 5 z thus we have

x82 2 t 2v82 5 x2 2 t 2v2 (6)
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What transformation keeps the last formula invariant? The solution of Eq.

(6) can be written as

x8 5 x cosh c 2 t v sinh c , t v8 5 t v cosh c 2 x sinh c

At x8 5 0 we have tanh c 5 x/ t v 5 t/ t . As a result we have

sinh c 5
t/ t

! 1 2 t2/ t 2
, cosh c 5

1

! 1 2 t2/ t 2

Consequently the transformation is given by

x8 5
x 2 tv

! 1 2 t2/ t 2
, v8 5

v 2 tz/ t 2

! 1 2 t2/ t 2
, y8 5 y, z8 5 z (7)

Here t is the cosmic time measured with respect to us, now, and goes backward.

The transformation (7) is called the cosmological transformation.

4. COSMOLOGICAL SPECIAL RELATIVITY

The transformation (7) very much resembles the well-known Lorentz

transformation. In fact, one can give a formal foundation to establish a

cosmoloqical special relativity of the four-dimensional continuum of the

three-dimensional Euclidean space and the outgoing radial velocity. We here

mention only two consequences of the cosmological transformation, and for

more applications and further details of such a theory the reader is referred
to the author ’ s book and earlier papers.(1±7)

4.1. The Law of Addition of Cosmic Times

As is accepted nowadays, intervals of cosmic times can be added linearly.

The cosmological transformation (7), however, tells us a different thing. For

a cosmological event that occurred at the cosmic time t1 (measured backward
with respect to us) preceded by a second event which occurred before the

first one at a cosmic time t2, the second event would appear to occur with

respect to us at a backward time t12 given by

t12 5
t1 1 t2

1 1 t1t2/ t 2 (cosmic times addition law) (8)

This law of addition of cosmic times can be tested by applying it to the

decay cosmic times for radioactive materials in determining the ages of our

earth and our galaxy.
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4.2. Inflation at the Early Universe

At the early universe gravity was completely negligible, and thus the

cosmological transformation (7) may be applied. To this end we proceed
as follows.

The line element for the universe is given by

t 2 dv2 2 (dx2 1 dy2 1 dz2) 5 ds2 (9)

Hence one has

t 2 1 dv

ds 2
2

2 F 1 dx

dv 2
2

1 1 dy

dv 2
2

1 1 dz

dv 2
2 G 1 dv

ds 2
2

5 1 (10)

or

( t 2 2 t2) 1 dv

ds 2
2

5 1 (11)

Multiplying the last equation by r 2
0, where r 0 is the matter density of

the universe at the present time, we obtain for the matter density at a backward

cosmic time t

r 5 t r 0
dv

ds
5

r 0

! 1 2 t2/ t 2
(12)

Since the volume of the universe is inversely proportional to its density,

it follows that the ratio of the volumes at two cosmic times t1 and t2 with

respect to us (we choose t2 , t1) is given by

V2

V1

5 ! 1 2 t22 / t 2

1 2 t21 / t 2 5 ! ( t 2 t2) ( t 1 t2)

( t 2 t1)( t 1 t1)
(13)

For cosmic times t1 and t2 very close to the Hubble time t , we may

assume that t 1 t2 ’ t 1 t1 ’ 2 t . Accordingly,

V2

V1

’ ! t 2 t2

t 2 t1

(14)

We denote T1 5 t 2 t1 and T2 5 t 2 t2, with T2 . T1. T1 and T2 are the

cosmic times as measured from the big bang. We thus have

V2

V1

’ ! T2

T1

(15)
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For T2 2 T1 ’ 10 2 32 sec and T2 ¿ 1 sec, we have

V2

V1

’ ! T2

T1

’ ! T1 1 10 2 32

T1

5 ! 1 1
10 2 32

T1

’
10 2 16

! T1

(16)

For T1 ’ 10 2 132 sec we obtain

V2

V1

’
10 2 16

10 2 66 5 1050 (17)

This result conforms with the inflationary universe theory of Guth(8)

and Linde(9) without assuming any model (such as the universe is propelled
by antigravity).

5. DECAY LAW OF RADIOACTIVE MATERIAL IN
COSMOLOGY

In this section we derive, following Carmeli and Malin,(10) a new cosmo-

logical law for the decay of radioactive material.

We assume that the probability of disintegration during any interval of

cosmic time dt8 is a constant. Thus

dN

dt8
5 2

1

T
N (18)

where T is the lifetime of the material. (Throughout this section the time

parameters t and t8 will not be backward as are considered in the previous

sections.)
Now, let us substitute in the formula for the addition of cosmic times,

Eq. (8), t1 5 t 5 t8 (present time), t2 5 dt; then t1 1 2 5 t 1 dt8, and making

an approximation, using the fact that t dt/ t 2 is much smaller than 1, we obtain

t 1 dt8 5 (t 1 dt) 1 1 2
t dt

t 2 2 5 t 1 1 1 2
t2

t 2 2 dt (19)

If dt is a time interval measured by a clock and we want to obtain dN/

dt, we need to find dt8/dt from Eq. (19) and substitute it in Eq. (18). We

then obtain

dt8

dt
5 1 2

t2

t 2 (20)

Equations (18) and (20) subsequently yield

dN

dt8
5

dN

dt

dt

dt8
5 2

1

T
N (21)



Aspects of Cosmological Relativity 1999

or, using Eq. (20),

dN

N
5 2

1

T

dt8

dt
dt 5 2

1

T 1 1 2
t2

t 2 2 dt (22)

Integration of the last equation then gives

N(t) 5 N0 exp F 2
1

T 1 1 2
t2

3 t 2 2 t G (23)

Now, when we say that t and t8 are present time, we start them at t 5
t8 5 0, which is the time when N 5 N0. Equation (23) will provide large

deviations from Eq. (18) when T is comparable to t , and we measure radioac-

tivity over astronomical times. It is not clear how such measurements/observa-

tions can be carried out. However, it may be possible to detect minute
deviations from linearity in a graph of ln N vs. t in very accurate labora-

tory measurements.

In principle, it follows from Eq. (23) that N(t) for a given t is less

than the traditional formula predicts. Namely, the material decays faster

than expected.

6. GALAXY DARK MATTER AS A PROPERTY OF SPACETIME

In this section we generalize cosmological relativity to curved space.

This will enable us to introduce gravitation.

We first describe, following Carmeli(11), the motion of a star in a central
field of a galaxy in an expanding universe. Use is made of a double expansion

in 1/c and 1/ t . In the lowest approximation the rotational velocity of the star

will be shown to satisfy v4 5 2±3GMcH0, where G is Newton’ s gravitational

constant and M is the mass of the galaxy. This formula satisfies observations

of stars moving in spiral and elliptical galaxies, and is in accordance with

the Tully±Fisher law.(12,13)

The problem of motion in general relativity is a very old one and started

with Einstein and Grommer,(14) who showed that the equations of motion

follow from the Einstein field equations rather than have to be postulated

independently as in electrodynamics. This is a consequence of the nonlinearity

of the field equations and the Bianchi identities. Much work was done since

then and the problem of motion in the gravitational field of an isolated system
is well understood these days.(15±26)

The topic of motion in an expanding universe is of considerable impor-

tance in astronomy since stars moving in spiral and elliptical galaxies show

serious deviation from Newtonian gravity and the latter follows from general
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relativity theory.(27) It follows that the Hubble expansion imposes an extra

constraint on the motionÐ the usual assumptions made in deriving Newtonian

gravity from general relativity are not sufficient in an expanding universe.
The star is not isolated from the ª flowº of matter in the universe. When this

is taken into account along with Newton’ s gravity, the result is a motion

which satisfies a different law from the one determining the planetary motion

in the solar system.

6.1. Geodesic Equation

The equation that describes the motion of a simple particle is the geodesic
equation. It is a direct result of the Einstein field equation G m n 5 k T m n ( k 5
8 p G/c4). The restricted Bianchi identity ¹ n G

m n [ 0 implies the covariant

conservation law ¹ n T m n 5 0. When volume-integrated, the latter yields the

geodesic equation. To obtain the Newtonian gravity it is sufficient to assume

the approximate forms for the metric g00 5 1 1 2 f /c2, g0k 5 0, and gkl 5
2 d kl, where k, l 5 1, 2, 3, and f is a function that is determined by the
Einstein field equations. In the lowest approximation in 1/c one then has

d 2xk

dt2 5 2
- f
- xk (24)

¹ 2 f 5 4 p G r (25)

where r is the mass density. For a central body M one then has f 5 2 GM/

R and Eq. (25) yields for circular motion the first integral

v2 5 GM/R (26)

where v is the rotational velocity of the particle.

6.2. Hubble’s Law in Curved Space

The Hubble law was given by Eq. (1) and recast in the form of Eq. (4)

when gravity was neglected. Gravitation, however, does not permit global

linear relations like Eq. (4) and the latter has to be adopted to curved space.

To this end one has to modify Eq. (4) to differential form and to adjust it to
curved space. The generalization of Eq. (4) is, accordingly,

ds2 5 g8m n dx m dx n 5 0 (27)

with x0 5 t v. Since the universe expands radially (it is assumed to be

homogeneous and isotropic), it is convenient to use spherical coordinates
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xk 5 (R, u , f ) and thus d u 5 d f 5 0. We are still entitled to adopt coordinate

conditions, which we choose as g80k 5 0 and g811 5 (g800)
2 1. Equation (5)

reduces to

dR

dv
5 t g800 (28)

This is Hubble’ s law taking into account gravitation, and hence dilation and

curvature. When gravity is negligible, g800 ’ 1, thus dR/dv 5 t , and by integra-
tion, R 5 t v or v 5 H0R when the initial conditions are chosen appropriately.

6.3. Phase Space

As is seen, the Hubble expansion causes constraints on the structure of

the universe which are expressed in the phase space of distances and velocities,

exactly the observables. The question arises: What field equations does the
metric tensor g8m n satisfy? We postulate that g8m n satisfies the Einstein field

equations in the phase space, G8m n 5 KT 8m n , with K 5 8 p k/ t 4, and k 5 G t 2/

c2. Accordingly, in cosmology one has to work in both the real space and in

the phase space. Particles follow geodesics of both spaces (in both cases they

are consequences of the Bianchi identities). For a spherical solution in the

phase space, similarly to the situation in the real space, we have in the lowest
approximation in 1/ t the following: g800 5 1 1 2 c / t 2, g80k 5 0, and g8kl 5
2 d kl, with ¹ 2 c 5 4 p k r . For a spherical solution we have c 5 2 kM/R and

the geodesic equation yields

d 2xk

dv2 5 2
- c
- xk (29)

with the first integral

1 dR

dv 2
2

5
kM

R
(30)

for a rotational motion. Integration of Eq. (30) then gives

R 5 1 3

2 2
2/3

(kM )1/3v2/3 (31)
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Inserting this value of R in Eq. (26) we obtain

v4 5
2

3
GMcH0 (32)

6.4. Galaxy Dark Matter

The equation of motion (32) has direct relevance to the problem of the

existence of galaxy dark matter. As is well known, observations show that

the fourth power of the rotational velocity of stars in some galaxies is propor-

tional to the luminosity of the galaxy (Tully±Fisher law), v4 } L. Since the

luminosity, in turn, is proportional to the mass M of the galaxy, L } M, it

follows that v4 } M, independent of the radial distance of the star from the
center of the galaxy, and in violation of Newtonian gravity. From this came

the idea of galaxy dark matter or, alternatively, a modification of Newton’ s

gravity in an expanding universe.

We have seen how a careful application of general relativity theory and

cosmological relativity gives an answer to the problem of motion of stars in

galaxies in an expanding universe. If Einstein’ s general relativity theory is
valid, then it appears that the galaxy halo dark matter is a property of spacetime

and not some physical material. The situation resembles the one that existed

at the beginning of the century with respect to the problem of the advance

of the perihelion of the planet Mercury, which general relativity showed was

a property of spacetime (curvature).

7. CARMELI’S COSMOLOGY

Based on the full group of transformations of cosmological relativity in

the seven-dimensional space of space-time-velocity, Krori et al.(28) extended
the flat-space metric to describe what the authors call Carmeli’s cosmology

for the expanding universe. The properties of this new cosmology were

discussed in detail and compared with the standard FRW cosmology. The

following is based on the paper by Krori et al.; for the full details the reader

is referred to the original paper.

7.1. Carmeli’s Cosmological Metric

The starting point is the flat-space Carmeli metric

ds2 5 c2dt2 2 (dx2 1 dy2 1 dz2) 1 t 2(dv2
x 1 dv2

y 1 dv2
z ) (33)
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The metric (33) is extended to the following form:

ds2 5 c2dt2 2 R2(t)(dx2
1 1 dx2

2 1 dx2
3) 1 T 2(t)(dv2

1 1 dv2
2 1 dv2

3) (34)

Here R(t) is the three-space scale factor and T(t) 5 H 2 1(t), where H(t) is the

Hubble parameter.

7.2. Field Equations

The energy-momentum tensor components are given by

T 0
0 5 r c2, T 1

1 5 T 2
2 5 T 3

3 5 2 p, T m
n 5 0; m , n $ 4 (35)

From Eqs. (34) and (35), using Einstein’ s field equations in seven dimensions,

we obtain

RÇ 2

R2 1
TÇ 2

T
1

3RÇ TÇ

RT
5

8 p c4 r
3

(36)

2RÈ

R
1

RÇ 2

R2 1
3TÈ

T
1

3TÇ 2

T 2 1
6RÇ TÇ

RT
5 2 8 p c2p (37)

3RÈ

R
1

3RÇ 2

R2 1
2TÈ

T
1

TÇ 2

T 2 1
6RÇ TÇ

RT
5 0 (38)

where a dot denotes differentiation with respect to t. We thus have three
equations for the four unknown variables R, T, r , and p.

7.3. Solution of the Field Equations

We assume a solution of the form R 5 R0t
m, where m is a positive

parameter, and putting TÇ 5 Tu(t), we obtain

t2uÇ 1
3

2
t2u2 1 3mtu 1

3

2
m(2m 2 1) 5 0 (39)

We next define a function v(t) such that 2vÇ 2 3uv 5 0; Eq. (39) will then

have the form

t2vÈ 1 3mtvÇ 1
9

4
m(2m 2 1)v 5 0 (40)
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Equation (40) admits a solution of the form v 5 v0t
n, where v0 is a

constant and n is given by

n 5
1 2 3m 6 ! 3m 1 1 2 9m2

2
(41)

From the above we obtain u 5 2n/3t and thus T 5 T0t
2n/3, where T0 is a

constant. Now, using the expressions of R and T in Eqs. (36) and (37) we

finally obtain

8 p c4 r t2 5 3m2 1 4n2/3 1 6mn (42)

8 p c2pt2 5 2 3m2 1 2m 2 8n2/3 1 2n 2 4mn (43)

Equations (42) and (43) provide a complete solution of the field equations.

7.4. Properties of Carmeli’s Cosmology

The properties of Carmeli’s cosmology are now discussed and compared

with the FRW cosmology.(29)

(a) m 5 1±2 corresponds to the radiation era for both cosmologies. At this
value of m, n 5 0 in Carmeli cosmology.

(b) In Carmeli cosmology, m varies from 1/3 to (1 1 ! 5)/6 with r c2/p
correspondingly decreasing from ` (dust) to 1.6191714. On the other hand,

in FRW cosmology, m varies from 1/3 to 2/3 with r c2/p correspondingly

increasing from 1 (stiff matter) to ` (dust). Obviously stiff matter is not

admissible in Carmeli cosmology.
(c) In Carmeli cosmology, as m increases from 1/3 to (1 1 ! 5)/6, p

increases from 0, reaches a maximum, and then falls to a certain nonzero value.

(d) In FRW cosmology, the Hubble parameter, H 5 RÇ /R, decreases with

the passage of time for all nonzero values of m. On the other hand in Carmeli

cosmology, the Hubble parameter, H 5 T 2 1, decreases with the passage of
time for m , 1/2 (with n positive), increases with the passage of time for

m . 1/2 (with n negative), but is constant for m 5 1/2 (with n 5 0).

(e) In FRW cosmology, in the present (dust) era (m 5 2/3), the Hubble

parameter HFRW and the age of the Universe tFRW are related by the formula

HFRW 5
2

3
t 2 1
FRW

In Carmeli’s cosmology, since T 5 H 2 1 the Hubble parameter Hc and

the age of the present (dust) universe tc are related by

Hc 5
1

T0

t 2 2n/3
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Following FRW cosmology, if we take 1/T0 to be a factor of order 1,

then with Hc 5 HFRW in the present era, we have tc , t3/2n
FRW, i.e., tc , t3FRW,

since n 5 1/2.
If this is so, then the age of the universe is very much higher according

to Carmeli cosmology. Further, Hc decreases more slowly than HFRW with

the passage of time in the present era.

(f) The expression for the cosmological redshift is(30)

1 1 z 5
R(t0)

R(t1)

where t0 is the epoch at which light emitted at an earlier epoch t1 from a

distant galaxy is received by our galaxy. Now, if t0 and t1 are assumed to be

the same in both the cosmologies, then for FRW cosmology (present era)

1 1 zFRW 5 1 t0

t1 2
2/3

since m 5 2/3, and for Carmeli cosmology (present era)

1 1 zc 5 1 t0

t1 2
1/3

since m 5 1/3.

Obviously, zFRW . zc. In other words, the redshift is less red in Car-

meli cosmology.
(g) The expression for the angular size of a distant galaxy is(30)

D u 5
d

r1R(t1)
5

d(1 1 z)

r1R(t0)
(44)

where d is the breadth of the distant galaxy, r1 is its coordinate distance from

our galaxy, t0 is the epoch of observation (in our galaxy) of the light emitted
at the earlier epoch t1 by the distant galaxy, and z is the redshift. If r1 and

t1 are assumed to be same for both cosmologies, then, from Eq. (44),

D u c . D u FRW

since m 5 2/3 for FRW cosmology and m 5 1/3 for Carmeli cosmology at

the present (dust) era.
(h) The expression for luminosity distance of a distant galaxy is

D 5 r1R(t0)(1 1 z)

where r1 is the coordinate distance of the distant galaxy and t0 is the epoch
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at which light is received by our galaxy from the distant galaxy. Since, as

already seen above,

RFRW(t0) . Rc(t0)

and

zFRW . zc

we find that

DFRW . Dc

It may be noted that Carmeli cosmology is theoretically interesting in

its own right. However, in the context of its significant deviations from the
standard FRW cosmology, sophisticated observational techniques will have

to be devised to assess the worth and validity of this new cosmology.

APPENDIX: TABLE OF NUMERICAL RESULTS

We list in Table I numerical results as given by Krori et al.(28)

Table I. Numerical Resultsa

m n 8 p r c4t2 8 p r c2t2 r c2/p

1/3 1/2 5/3 0 `
0.4 0.3358898 1.4365645 0.1534974 9.3588849

0.458 0.1616129 1.1082291 0.244209 4.5380355

0.474 0.1051945 0.9879554 0.2554032 3.8682186

1/2 0 0.7500000 0.2500000 3.000000

0.514 2 0.0543697 0.6288532 0.2305139 2.7280484

0.53 2 0.1706014 0.3389937 0.161592 2.0978371

(1 1 ! 5)/6 2 ( ! 5 2 1)/4 0.00099664 0.000615572 1.6191714

a From Krori et al.(28)
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